The Galileo search and rescue (SAR) service is Europe‘s contribution to the international emergency beacon locating system called COSPAS-SARSAT. This essential Galileo service has the potential to dramatically reduce the time to locate and reach people in distress on sea and land. The 2017 Munich Satellite Navigation Summit saw a dedicated session that outlined the potential impact of the full Galileo SAR service on the afternoon of 15 March.

Session chair Xavier Maufroid of the European Commission welcomed participants to the first ever discussion of Galileo SAR at a Munich Summit by screening a preview of the service’s launch video. The service itself will be officially launched on 6 April 2017 – a date chosen to highlight the COSPAS-SARSAT 406 MHz signal.

He described the Galileo SAR service as the fruit of a “long-lasting collaboration with COSPAS-SARSAT” that began with the early offer from the European Commission to host COSPAS-SARSAT signal repeaters on the satellites. The SAR antennae weighed only 8 kg and consumed just 3 % of the satellite’s power. He stated that: “The SAR service represented just 1 % of total Galileo programme costs, but should result in thousands of lives being saved.”

Steven Lett, Head of COSPAS-SARSAT Secretariat based in Montreal, described the service that had helped rescue some 42 000 people since 1982. It was not a regulatory agency, but enabled the delivery of global alerts to over 200 countries and territories, whether they were members of the organisation or not. It was the only system that can independently locate a distress beacon wherever it was on Earth.

Steven Lett, Head of COSPAS-SARSAT Secretariat, talking in Munich.

The Galileo service was part of an upgrade of the COSPAS-SARSAT system, which would eventually see it hosted on three medium-earth orbit (MEO) GNSS hosts: Galileo, GLONASS and GPS. “Galileo will be the first full constellation with global SAR capability,” said Lett. “This new MEOSAR system has a larger footprint than the current low-earth orbit (LEO) system.” It also provided improved location accuracy, and the return link available on the Galileo implementation allowed a reassuring response to be sent to the person who had activated the beacon.

The Galileo SAR is operated by French company CNES in Toulouse. Jeremie Benoist from CNES described the various components of the system and highlighted the global nature of its reach. This will be further improved when a fourth element of the Galileo SAR ground segment is established on the French island of La Reunion in the Indian Ocean to better cover the southern hemisphere. The performance of the service was already impressive. “Even though only nine Galileo satellites are fully commissioned currently, the system is performing better than its specification,” he said.

Capability proven

And the system has already proven its worth. Tore Wangsfjord is Chief of Operations at Norway’s Joint Rescue Coordination Centre and is responsible for search and rescue operations in a huge region, covering from 55 degrees north to the North Pole. Most of his operations are in response to 406 MHz beacon alerts as there are no other communication systems in the area. The northern ground segment for MEOSAR has been hosted in Spitsbergen since 2013.

“The results with Galileo have been good so far and will improve with more satellites,” he said.  Wangsfjord compared a recent mission in response to a distress signal from a crashed helicopter in the far north of Norway. The distress signal from the Galileo SAR system arrived at his centre 46 minutes before the current LEO system and its position was within 100 metres of the actual crash site, while the LEO system position proved to be some 1.5 kilometres from the site.

“This is just one of several real life distress situations where MEOSAR has already shown improved accuracy and timing,” he said. “Galileo SAR will undoubtedly contribute to saving lives.”

Finally Eric Pautal from French 406 beacon manufacturer ELTA looked to the future and other potential applications for the COSPAS-SARSAT system. He reiterated that the MEO implementation gave better coverage and better accuracy, which may be appropriate to address the requirements of the new commercial airline regulations. From 2021, a new Global Aeronautical Distress Safety System (GADSS) to track and locate all international commercial air transport aircraft with a take-off mass of 27 tonnes or more will be required. “Flight location will be normally transmitted every 15 minutes,” he said, “with autonomous distress tracking triggered by abnormal events increasing flight location transmission to once per minute.” This could be yet another important opportunity for the use of Galileo SAR technology.

Media note: This feature can be republished without charge provided the European GNSS Agency (GSA) is acknowledged as the source at the top or the bottom of the story. You must request permission before you use any of the photographs on the site. If you republish, we would be grateful if you could link back to the GSA website (http://www.gsa.europa.eu).