Orbital and Technical Parameters

Reference Constellation Orbital and Technical Parameters

SatelliteSV IDSlotSemi-Major Axis (Km)EccentricityInclination (deg)RAAN (deg)2Arg. Perigee (deg)2Mean Anomaly (deg)2,3
NOMINAL SATELLITES
GSAT0101E11B0529599.80.056.077.6320.015.153
GSAT0102E12B0629599.80.056.077.6320.060.153
GSAT0103E19C0429599.80.056.0197.6320.0345.153
GSAT0203E26B0829599.80.056.077.6320.0150.153
GSAT0205E24A0829599.80.056.0317.6320.0135.153
GSAT0206E30A0529599.80.056.0317.6320.00.153
GSAT0208E08C0729599.80.056.0197.6320.0120.153
GSAT0209E09C0229599.80.056.0197.6320.0255.153
GSAT0211E02A0629599.80.056.0317.6320.045.153
GSAT0207E07C0629599.80.056.0197.6320.075.153
GSAT0212E03C0829599.80.056.0197.6320.0165.153
GSAT0213E04C0329599.80.056.0197.6320.0300.153
GSAT0214E05C0129599.80.056.0197.6320.0210.153
GSAT0215E21A0329599.80.056.0317.6320.0270.153
GSAT0216E25A0729599.80.056.0317.6320.090.153
GSAT0217E27A0429599.80.056.0317.6320.0315.153
GSAT0218E31A0129599.80.056.0317.6320.0180.153
GSAT0219E36B0429599.80.056.077.6320.0330.153
GSAT0220E13B0129599.80.056.077.6320.0195.153
GSAT0221E15B0229599.80.056.077.6320.0240.153
GSAT0222E33B0729599.80.056.077.6320.0105.153
GSAT0223E34B0329599.80.056.077.6320.0285.153
GSAT0225E29C0529599.80.056.0197.6320.030.153
GSAT0226E23A0229599.80.056.0317.6320.0225.153
AUXILIARY SATELLITES
GSAT0201E18Ext0127977.60.16249.85052.52156.198316.069
GSAT0202E14Ext0227977.60.16249.85052.52156.198136.069
GSAT0224E10B1529599.80.056.077.6320.037.653
GSAT0227E06C1229599.80.056.0197.6320.0277.653
GSAT0232E16A1729599.80.056.0317.6320.0112.653
NOT-IN-SERVICE SATELLITES
GSAT0204E22B1429599.80.056.077.6320.0352.653
GSAT0210E01A1229599.80.056.0317.6320.0247.653
DECOMISSIONED SATELLITES
GSAT0104E20       

1: Reference date for the constellation is 2016-11-21 00:00:00 UTC6. The table shows a snapshot of the reference orbit at the given epoch. The reference orbit for a different epoch can be computed following the note. Occasionally the table might be consistently updated to a different epoch, for example when introducing new satellites. The reference orbit indicated corresponds to the final orbital slot within the constellation.

2: The above table provides values for the given UTC epoch. The reference RAAN, argument of perigee and Mean Anomaly are dynamic parameters, the other are static. To calculate the values for other epoch, users are advised to use a linear extrapolation for the RAAN, argument of perigee and the Mean Anomaly with the following temporal rates: 

Reference parameter ratesNominal Galileo orbitsL3 Elliptical orbits
d(RAAN)/dt-0.02764398 deg/day-0.039867092 deg/day
d(Arg. peri)/dt0.00000000 deg/day0.034373586 deg/day
d(Mean Anomaly)/dt613.72253566 deg/day667.909221051 deg/day
Note that the average dynamic parameters values of auxiliary slots C14, B14 and B15 can be computed as per Nominal Galileo orbits.
 
3: True anomaly (υ) and mean anomaly (M) are related through the eccentric anomaly and the Kepler’s equation. The true anomaly can be also solved from the mean anomaly by using a series expansion approach of the so-called equation of the center. For reference orbit computation the series solution can be truncated in the following terms:
Note that for circular orbits (eccentricity =0) both mean and true anomalies are identical.
 
Source: ESA
 
4: ISO-8601 Date and time format

 

Parameters Definition

Coordinates System

The inertial reference frame is defined by the position of the vernal equinox ‘X’ at a certain epoch. The ‘Z’ axis is defined by the spin axis of the Earth (North Pole), and the ‘Y’ axis completes the orthogonal set of the right handed inertial reference frame.

Keplerian Elements

The next figure illustrates the geometric properties of the usual set of orbital elements used to describe the motion of a satellite in Earth orbit, well characterized by the Keplerian elements of an elliptical orbit.

 

   Click to enlarge

a: Semi-major axis of orbital ellipse is the semi-major axis of the ellipse defining the orbit.

e: Numerical eccentricity of the orbit is the eccentricity of the orbital ellipse. Eccentricity is a measure of how an orbit deviates from circular. A perfectly circular orbit has an eccentricity of zero; higher numbers indicate more elliptical orbits.

i: Inclination of orbital plane is the angle between the orbital plane and the equator.

Ω: Right ascension of Ascending Node (RAAN) defines the relative angular phasing between the orbital plane and the Vernal Equinox, which is the point of intersection between the Sun’s trajectory and the Earth’s equatorial plane. Due to the Oblateness of the Earth, the RAAN is decreasing about 10 degrees per year.

NOTE: the intersection of equatorial plane and orbital plane is called “Nodal Line”. Its intersection with the unit sphere defines two points: the “Ascending Node”, through which the satellite crosses to the region of the positive Z-axis, and the “Descending Node”. “Right Ascension” is counter-clockwise sense viewed from the positive Z-axis.

ω: Argument of perigee is the angle between the ascending node and perigee directions, measured along the orbital plane. The perigee is the point of closest approach of the satellite to the centre of mass of the earth. The most distant position is the Apogee. Both are in the orbital ellipse semi-major axis direction.

v: True anomaly  is the geocentric angle between perigee direction and satellite direction. The sum of the True Anomaly and the Argument of Perigee defines the “Argument of Latitude”. Notice that for a circular orbit (e = 0) the Argument of Perigee and the True Anomaly are undefined. The satellite position, however, can be specified by the Argument of Latitude.

u: Argument of latitude is the sum of argument of perigee and true anomaly. It is the angle measured from the equator to the satellite at a particular epoch. For the circular orbits the argument of perigee is not well defined, therefore it is more convenient to use the argument of latitude instead.  In the table, the argument of perigee has been set to zero, therefore the argument of latitude and the true anomaly are identical.

The satellite height is characterized by the orbit’s semimajor axis a, the variation in the radial distance due to the ellipticity of the orbit (the eccentricity e), and the angular distance v (the true anomaly) from the point of closest approach in the orbit (called the Perigee).

Slot: The Galileo reference constellation has a total of 30 Medium Earth Orbit (MEO) satellites, including 6 auxiliary satellites, in a so called Walker 24/3/1 constellation. This particular Walker configuration implies that the Galileo constellation consists of 24 satellites homogenously distributed in three different orbital planes (A, B and C) separated in the equatorial plane by 120 degrees.

As observed in the graph below, in each orbital plane, each satellite is separated with an angular distance of 45 degrees. The relative phase shift factor between satellites in adjacent planes is 1, leading to an offset of 15 degrees between satellites in adjacent planes.
 

 

Click to enlarge

 

 

Satellite Launch Information

Launch
ID & Date (UTC)
SatelliteNickname1Launch siteCarrier rocket
L1
2011-10-21
10:30
IOV PFMGSAT0101

Thijs

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
IOV FM02GSAT0102

 Natalia

L2
2012-10-12
18:15
IOV FM03GSAT0103

 David

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
IOV FM04GSAT0104

 Sif

L3
2014-08-22 12:27
FOC FM01GSAT0201

 Doresa

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
FOC FM02GSAT0202

 Milena

L4
2015-03-27
21:46
FOC FM03GSAT0203

 Adam

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
FOC FM04GSAT0204

 Anastasia

L5
2015-09-11
02:08
FOC FM05GSAT0205

 Alba

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
FOC FM06GSAT0206

 Oriana

L6
2015-12-17
11:51
FOC FM08GSAT0208

 Andriana

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
FOC FM09GSAT0209

 Liene

L7
2016-05-24
08:48
FOC FM10GSAT0210

 Danielė

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
FOC FM11GSAT0211

 Alizée

L8
2016-11-17
13:06
FOC FM07GSAT0207

 Antonianna

Guiana Space Center
(Kourou, French Guiana)
Ariane 5
FOC FM12GSAT0212

 Lisa

FOC FM13GSAT0213

 Kimberley

FOC FM14GSAT0214

 Tijmen

L9
2017-12-12
18:36
FOC FM15GSAT0215

 Nicole

Guiana Space Center
(Kourou, French Guiana)
Ariane 5
FOC FM16GSAT0216

 Zofia

FOC FM17GSAT0217

 Alexandre

FOC FM18GSAT0218

 Irina

L10
2018-07-25
11:25
FOC FM19GSAT0219

 Tara

Guiana Space Center
(Kourou, French Guiana)
Ariane 5
FOC FM20GSAT0220

 Samuel

FOC FM21GSAT0221

 Anna

FOC FM22GSAT0222

 Ellen

L11
2021-12-05
00:19
FOC FM23GSAT0223

 Nikolina

Guiana Space Center
(Kourou, French Guiana)
Soyuz /Fregat
FOC FM24GSAT0224

 Shriya

L12
2024-04-28
00:34
FOC FM25GSAT0225 Kennedy Space Center
(Florida, USA)
Falcon 9
FOC FM27GSAT0227 
L13
2024-09-17
22:50
FOC FM26GSAT0226 Kennedy Space Center
(Florida, USA)
Falcon 9
FOC FM32GSAT0232 

1 The satellite nickname corresponds with the name of the child who was the winner of the “Galileo Children's Drawing Competition” on each European Member State.